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ABSTRACT

Aims. The infall of material onto a protostar, in the case of optically thick line emission, produces an asymmetry in the blue- and
red-wing line emissions. For an angularly resolved emission, this translates in a blue central spot in the first-order moment (intensity
weighted velocity) map.
Methods. An analytical expression for the first-order moment intensity as a function of the projected distance was derived, for the
cases of infinite and finite infall radius. The effect of a finite angular resolution, which requires the numerical convolution with the
beam, was also studied.
Results. This method was applied to existing data of several star-forming regions, namely G31.41+0.31 HMC, B335, and LDN 1287,
obtaining good fits to the first-order moment intensity maps, and deriving values of the central masses onto which the infall is taking
place (G31.41+0.31 HMC: 70–120 M�; B335: 0.1 M�; Guitar Core of LDN 1287: 4.8 M�). The central-blue-spot infall hallmark appears
to be a robust and reliable indicator of infall.

Key words. ISM: jets and outflows – ISM: individual objects: G31.41+0.31 HMC – ISM: individual objects: B335 –
stars: formation – ISM: individual objects: LDN 1287

1. Introduction

The early phases of star formation are characterized by infall
motions of ambient material onto a central protostellar object.
However, obtaining unequivocal observational evidence for
these motions constitutes a long-standing problem. Rotation,
infall and outflow motions can be present simultaneously in the
early phases of star formation, and may produce similar obser-
vational features in the line profiles, making an unambiguous
interpretation of the observations difficult.

The most common method used so far to search for evi-
dence of infall is based on the so-called “blue asymmetry”.
This signature consists in the appearance of two peaks in the
spectral line profiles, with the blueshifted peak stronger than
the redshifted peak (e.g., Zhou et al. 1994; Klaassen & Wilson
2007; Wu et al. 2007). However, the effect of protostellar infall
on molecular line profiles cannot be easily isolated from those
of other dynamical processes, resulting in ambiguities (e.g.,
Purcell et al. 2006; Szymczak et al. 2007). Inverse P-Cygni pro-
files, which consist in the detection of absorption at redshifted
velocities against a bright background continuum source, have
been observed in molecular lines against a bright background
HII region (e.g., Keto et al. 1987; Zhang et al. 1998) or against the
bright dust continuum emission of the hot protostellar core itself
(e.g., Di Francesco et al. 2001; Girart et al. 2009), and have been
interpreted as infall motions of the surrounding envelope. Nev-
ertheless, it uniquely indicates that foreground matter is moving
toward a hotter source, no matter how or if it is indeed gravita-
tionally bound. See Mayen-Gijon et al. (2014) and Mayen-Gijon
(2015) for a thorough review of infall signatures.

Anglada et al. (1991) introduce a more complete signature,
the “3D spectral imaging infall signature”, which is based on the
spatial distribution of the line emission intensity in the images

as a function of the line-of-sight (LOS) velocity (i.e., the chan-
nel maps). This signature, appropriate for angularly resolved
sources, results as an extension of the formalism initially devel-
oped by Anglada et al. (1987) for the study of an angularly
unresolved infalling core. These signatures are focused on rel-
atively high velocities, in order to avoid confusion with emission
from the ambient cloud at low velocities. With the assumption
of gravitational infall motions dominating the kinematics over
turbulent and thermal motions, and spherical symmetry with an
infall velocity increasing inwards, it can be shown that the points
of the infalling core with the same LOS velocity form closed
surfaces. The equal-LOS-velocity surfaces are a nested set of
surfaces with the same shape, decreasing in size with increas-
ing absolute value of the LOS velocity, and converging to the
position of the core center (see Fig. 1).

Because the equal-LOS-velocity surfaces are closed sur-
faces, a given LOS, in general, intersects the same surface twice.
However, if the opacity is high enough, only a narrow layer at
the front side of the equal-LOS-velocity surface is observable.
Hence, the intensity map at a given LOS velocity is an image of
the excitation temperature distribution in the side of the equal-
LOS-velocity surface facing the observer (thick lines in Fig. 1),
while the emission from the rear side remains hidden (thin lines
in Fig. 1). Thus, the shapes of the blueshifted and redshifted
emitting regions1 are different. Since the temperature increases
inwards, the integrated blueshifted emission comes from a region
closer, on average, to the central protostar (and, therefore, hot-
ter) than the corresponding redshifted emission, resulting in
asymmetric line profiles, with the blueshifted wing stronger than
the redshifted wing (Anglada et al. 1987). The difference is still

1 The LOS velocity considered is relative to the systemic velocity of
the source throughout.
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more remarkable for a pair of blueshifted–redshifted channel
maps. Assuming that the maps are centered on the position of
the protostar, for the redshifted channel the intensity is slightly
lower at the center of the map than at the edges, because toward
the center the side of the equal-LOS-velocity surface facing the
observer is slightly farther away from the center of the core
and thus, colder than the rest of the surface. For the blueshifted
channel, the intensity increases sharply toward the center of the
image since this emission comes from a region very close to the
center of the core and, therefore, very hot (see Fig. 2). In addi-
tion, since the size of the equal-LOS-velocity surfaces decreases
with increasing absolute value of the LOS velocity, the emission
becomes more compact for increasing absolute value of the LOS
velocity (see Fig. 2).

This behavior of the intensity maps for redshifted and
blueshifted LOS velocities produces a characteristic signature
in the intensity-weighted mean velocity (first-order moment)
map, which was pointed out by Mayen-Gijon et al. (2014),
in other words, that the central region of the first-order map
appears blueshifted because of the higher weight of the strong
blueshifted emission. Additionally, the integrated intensity,
(zeroth-order moment) peaks toward the central position.
At larger distances from the center, the integrated intensity
decreases, the blue and redshifted intensities become similar,
and the intensity-weighted mean velocity approaches the sys-
temic velocity of the cloud. Therefore, the first-order moment
of an infalling envelope is characterized by a compact spot of
blueshifted emission toward the position of the zeroth-order
moment peak. This infall hallmark is designated as the “central
blue spot” (Mayen-Gijon et al. 2014; Mayen-Gijon 2015). One
of the advantages of the central-blue-spot infall hallmark is
that its detection does not require a beforehand knowledge
of the systemic velocity of the cloud. An accurate knowledge
of the systemic velocity is critical in searching for infall through
the analysis of asymmetries in the line profiles.

Mayen-Gijon et al. (2014) and Mayen-Gijon (2015) iden-
tify both the 3D spectral imaging infall signature and the
central-blue-spot hallmark in high-angular resolution maps of
the emission of several NH3 transitions toward G31.41+0.31
HMC, and compare the observed emission with the predictions
of a spherically symmetric model with full transport of radiation
calculation (Osorio et al. 2009).

If there is rotation, the LOS velocity has contributions from
both the infalling velocity and the rotation velocity. Mayen-Gijon
et al. (2014) and Mayen-Gijon (2015), in the analysis of the NH3
data of G31.41+0.31 HMC, discuss qualitatively how rotation
affects the channel maps of an infalling core. These authors
find that the radial intensity profile of the image for a given
LOS-velocity channel is stretched toward the side where rotation
has the same sign than the channel velocity, and it is shrunk on
the opposite side. Nevertheless, as in the non-rotating case, the
images in blue-shifted channels present a centrally peaked inten-
sity distribution, while in the red-shifted channels they present a
flatter intensity distribution. Thus, the rotation signature makes
the spatial intensity profiles asymmetric with respect to the cen-
tral position but it does not mask the 3D spectral imaging infall
signature of Anglada et al. (1991).

Regarding the first-order moment map, Mayen-Gijon (2015)
explores how the central-blue-spot hallmark of an infalling core
is modified by the presence of rotation. He finds that rotation
makes the central-blue-spot even bluer and moves it off the cen-
ter toward the half of the core where rotation tends to shift
velocities to the blue. Additionally, a dimmer red spot appears
symmetrically located on the opposite side of the rotation axis.

In the present paper we studied quantitatively the central-
blue-spot infall hallmark, restricted to the spherically symmetric
case without rotation, taking as a basis the work of Anglada
et al. (1987, 1991). Using the same assumptions than in these
papers, we derived analytical expressions for the intensity pro-
files (Sect. 2), the line profiles (Sect. 3), and the first-order
moment of the intensity profile (Sect. 4) as functions of the
angular distance from the center. This was done for the case
of an infinite infall radius, without considering the effect of a
finite angular resolution. The details of the derivation for arbi-
trary values of the power-law indices are given in Appendix A.
The effect of a finite spectral resolution is addressed in Sect. 4.2
and Appendix C, while the effect of a finite angular resolution
is studied in Sect. 4.3 and Appendix D. The case of a finite
infall radius is presented in Sect. 5, where an analytical expres-
sion for the first-order moment is obtained. The details of the
derivation for arbitrary values of the power-law indices are given
in Appendix B. The transformation between reduced units and
practical units is described in Sect. 6. The results are applied to
several cases (G31.41+0.31 HMC, B335, LDN 1287) in Sect. 7,
with the analysis of pre-existing data that show the central-blue-
spot infall hallmark. Finally, the conclusions are given in Sect. 8.

2. Intensity profile

Based on Anglada et al. (1987, 1991), we are assuming an
infalling molecular gas core, with infall velocity and tempera-
ture given by power laws of the radius (Eq. (1) of Anglada et al.
1987),

V/V0 = (R/R0)−α,
T/T0 = (R/R0)−β, (1)

where R0 is a reference radius. The power-law indices of the
infall velocity and temperature are taken with a value α = β =
1/2, that is, free-fall velocity, and optically thin dust heating from
a central protostar, which are characteristic of the main accretion
phase in the Larson collapse model (Larson 1972) or in the Shu
(1977) inside-out collapse model. In the Appendices A and B the
case of arbitrary values of the power-law indices is developed.

Let the coordinate z be along the line of sight, positive out-
wards from the observer, and p the impact parameter, that is,
the distance to the center projected on the plane of the sky (see
Fig. 1). All coordinates are lengths in units of R0, so that the
distance to the center in units of R0 is

r ≡ R/R0 = (p2 + z2)1/2. (2)

Let us define the reduced line-of-sight (LOS) velocity and
temperature

vz ≡ Vz/V0,

t ≡ T/T0. (3)

Equations (9) and (10) of Anglada et al. (1991) can be
expressed in reduced variables as

p =
[
|z/vz|4/3 − z2

]1/2
,

t = |vz/z|1/3. (4)

For a given |vz| Eq. (4) gives the parametric equation (with
z as parameter) of the intensity profile, t(p). We are assuming
that the intensity observed at a given LOS velocity comes from
the part of the equal-LOS-velocity surface facing the observer.
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Fig. 1. Intersection of the surfaces of equal line-of-sight (LOS) velocity,
vz, for a collapsing protostellar core, with the plane (p, z) (see Sect. 2).
The LOS-velocities are different pairs of negative and positive velocities
(vz = ±2−1/2,±1,±21/2,±2). The blue lines are the contours for vz < 0,
and the red lines for vz > 0. The observer, located to the right, at p = 0,
z = −∞, sees the emission coming from the part of the surfaces of equal
LOS-velocity facing the observer, traced with thick lines. The dashed
lines indicate the position of (zm, pm) for each contour, where pm is the
maximum value of p, and zm the corresponding value of z. The square
frame is drawn at p = ±1, z = ±1.

Thus, the blue-wing intensity profile (vz < 0) is obtained for
0 < z < zm, while the red-wing intensity profile (vz > 0) is
obtained for −z∗ < z < −zm, where zm is the value of z for which
p is maximum for a given vz, p = pm (see Fig. 1), and z∗ is
the maximum value of z for a given equal-LOS-velocity surface.
The value of z∗ is obtained from Eq. (4) for p = 0, z∗ = |vz|−2. The
value of zm can be obtained from the derivative of p(z) given in
Eq. (4), and the values obtained for zm and pm are

zm = (2/3)3/2 v−2
z = 0.544 v−2

z ,

pm = 2/33/2 v−2
z = 0.385 v−2

z . (5)

The ratio zm/pm is independent of vz, zm/pm =
√

2, meaning
that the points (zm, pm) are aligned along a straight line passing
through the center, with a slope of 1/

√
2 (see Fig. 1).

For any LOS-velocity the emission is confined inside a pro-
jected distance p < pm. For blueshifted LOS-velocities (vz < 0)
the intensity increases sharply for small projected distances p,
while for redshifted LOS-velocity (vz > 0) the intensity is almost
flat up to pm (see Figs. 3 and 4). This can be seen in Fig. 2,
where we show the intensity maps, for LOS pairs of positive and
negative LOS velocities.

For the maximum projected distance pm the red-wing inten-
sity is maximum, and equal to the minimum blue-wing intensity
(see Fig. 3),

t(pm) = (3/2)1/2 vz = 1.225 vz. (6)

The blue wing intensity for small projected distances is very
high, and for the adimensional temperature and LOS velocity
t � vz we obtain the asymptotic behavior (see Fig. 3)

t(p) ' p−1/2 (p � v−2
z ). (7)

Fig. 2. Intensity maps for pairs of LOS-velocities, Vz = ±0.8 km s−1

(top), ±1.1 km s−1 (middle), and ±1.4 km s−1 (bottom), calculated for a
a mass M∗ = 1 M�, a distance of 140 pc, and a beam of 0.′′1. The axes
are position offsets labeled in arcsec. The intensity scale is the same
for all maps. We note the sharp peak at the center of the blueshifted
LOS-velocity maps (left), and the flat, slightly concave shape of the
redshifted LOS-velocity maps (right), and the more compact emission
for high values |Vz| (bottom) than for low values of |Vz| (top).

3. Line profile

In order to calculate the first-order moment intensity, we need
to obtain the line intensity for any value of p. Thus, we want
to derive the intensity and LOS velocity for a given projected
distance p. From Eq. (4) we can obtain easily the LOS velocity
and temperature as functions of p and z,

vz =
−z

(p2 + z2)3/4 ,

t =
1

(p2 + z2)1/4 . (8)

These equations can be interpreted as the parametric equa-
tion (with z as parameter) of the line profile t(vz) for a given
projected distance p (see Figs. 5 and 6).

The line of sight with a given p intersects equal-LOS-
velocity surfaces of decreasing size, down to that corresponding
to pm = p. For this equal-LOS-velocity surface, the blueshifted
velocity is minimum (maximum absolute value) and the red-
shifted velocity is maximum (see Fig. 1). This occurs at the
points with coordinate z =±√2p.

3.1. Blue wing

The observable intensity at blueshifted velocities (vz < 0) is
obtained for 0 < z <

√
2p. For a given value of p, the minimum

blueshifted intensity tblue
min and minimum velocity vblue

min (maximum
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Fig. 3. Intensity profiles t(p) for vz = −1 (top panel, blue) and vz = +1
(bottom panel, red). The different dashed lines indicate the blue and red
wing temperature at the maximum value of p, p = pm, and the blue
wing asymptotic behavior for p � 1.

absolute value) are obtained at the point (p, z = +
√

2p),

tblue
min ≡ t1 = 3−1/4 p−1/2 = 0.760 p−1/2,

vblue
min ≡ −vm = −21/23−3/4 p−1/2 = −0.620 p−1/2, (9)

while the maximum blueshifted intensity tblue
max and maximum

velocity vblue
max = 0 are obtained at the point (p, z = 0)

tblue
max ≡ t2 = p−1/2,

vblue
max = 0. (10)

3.2. Red wing

The observable intensity at redshifted velocities (vz > 0) is
obtained for −∞ < z < −√2p. For a given value of p, the
minimum redshifted intensity tred

min = 0 and minimum velocity
vred

min = 0 are obtained at the point (p, z = +∞),

tred
min = 0,

vred
min = 0, (11)

while the maximum redshifted intensity tred
max and maximum

velocity vred
max are obtained at the point (p, z = −√2p),

tred
max ≡ t1 = 3−1/4 p−1/2 = 0.760 p−1/2,

vred
max ≡ vm = 21/23−3/4 p−1/2 = 0.620 p−1/2. (12)
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Fig. 4. Intensity profiles t(p) for pairs of positive and negative
velocities, vz = ±1,±21/2,±2.
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Fig. 5. Line profile showing the emission at a projected distance p
as a function of LOS velocity. The blue wing emission encompasses
LOS velocities from −vm to 0, and its peak value (at vz = 0) is t2 =
p−1/2. The red wing emission encompasses LOS velocities from 0 to
vm = 0.620 p−1/2, and its peak value (at vz = vm) is t1 = 0.760 p−1/2.

A84, page 4 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834998&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834998&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834998&pdf_id=0


R. Estalella et al.: Central-blue-spot infall hallmark

-1 -0.5 0 0.5 1
v

z
 = V

z
/V

0

0

0.2

0.4

0.6

0.8

1

t 
=

 T
/T

0

p = 1

p = 2

p = 1

p = 2

p = 2
1/2

p = 2
1/2

Fig. 6. Line profiles for values of p = 1, 21/2, 2.

4. First-order moment for an infinite infall radius

4.1. Dependence on the projected distance

We are interested in calculating the first-order normalized
moment of the line profile as a function of the projected dis-
tance,

µ1(p) =
µ′1(p)
µ0(p)

, (13)

where µ0 and µ1 are the zeroth-order and unnormalized first-
order moments,

µ0(p) =

∫
line

t(p, vz) dvz,

µ′1(p) =

∫
line

vzt(p, vz) dvz. (14)

The moment µ0 has units of intensity times velocity, while
µ1 has units of velocity.

From Eq. (8) we can obtain vz as an explicit function of t,

|vz| = t(1 − p2t4)1/2, (15)

where the blue-wing profile is obtained for 3−1/4 p−1/2 < t <
p−1/2, and the red-wing profile for 0 < t < 3−1/4 p−1/2. Since we
know the inverse function vz(t), we can evaluate the integrals by
integration by parts,

µ0 =

∫
t dvz = vzt −

∫
vz dt,

µ′1 =

∫
vzt dvz =

1
2
v2

z t − 1
2

∫
v2

z dt. (16)

The details of the calculation of these integrals are given
in Appendix A. As described in the appendix, the final results
obtained can be summarized as follows. The moments µ0, µ′1,

0.01 0.1 1 10
p

0.01

0.1

1

10

µ
0
 = 0.792 p

-1

-µ
1
 = 0.120 p

-1/2

Fig. 7. Log–log plot of the moments µ0 and −µ1, as a function of
projected distance p.

and µ1 are power laws of the projected distance p, and given by

µ0(p) = H0 p−1,

µ′1(p) = H1 p−3/2, (17)

µ1(p) = [H1/H0] p−1/2,

with H0 and H1 given by

H0 =

√
2

2
+
π

8
− 1

2
arcsin

1√
3

= 0.792,

H1 = − 2
21

= −0.095, (18)

H1/H0 = −0.120.

A plot of the zeroth- and first-order moments can be seen in
Fig. 7.

4.2. Effect of a finite spectral resolution

Let us assume that we are observing the lines with an spec-
trometer with a finite spectral resolution. The response of the
spectrometer can be represented by the convolution of the “real”
line profile with the instrumental response, which has a width
equal to the spectral resolution. In general, we can assume that
instrumental response is symmetric with respect to velocity. As
shown in Appendix C, in this case the first-order moment of the
line is not modified by the spectrometer.

4.3. Effect of a finite angular resolution

Let us assume that we are observing with a telescope with a cir-
cularly symmetric Gaussian beam with half-power beamwidth
(HPBW) θb. In the following we will use the beamwidth in units
of R0, that is, b ≡ D θb/R0, where D is the distance to the source.

The observed intensity as a function of projected distance
will be the 2D convolution of t(p), given by Eq. (4), with the
beam. Since the moments µ0 and µ′1 (but not µ1) depend linearly
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Fig. 8. Log–log plots of the moments µ0 and −µ1 (solid lines) for a
Gaussian beam with HPBW b = 1 (dotted line), as a function of the
projected distance p, and their asymptotic values (dashed lines) for p �
b and p � b.

on the line profile t(p) (Eq. (14)), the convolution (a linear oper-
ator) can be performed onto µ0 and µ′1, and after that, obtain the
normalized first-order moment µ1(p; b) = µ0/µ

′
1.

The 2D convolution of the power-law functions µ0 and µ′1
with a Gaussian beam has to be done numerically. However, it
has to be done only once, because the result can be scaled for
any value of b. For instance, if the numerical calculation has
been done for b = 1 and µ1(p; 1) is obtained, then for any value
of b we have

µ1(p; b) = b−1/2µ1(p/b; 1). (19)

The function −µ1(p; 1) is shown as a blue solid line in the
log–log plot of Fig. 8.

However, since both µ0 and µ′1 are power laws of p, as shown
in Appendix D, the value at the origin, p = 0, and the asymptotic
expression for large projected distances, p � b, can be obtained
analytically. By application of Eqs. (D.8) and (D.10) to µ0 we
obtain (see Fig. 8)

µ0(0; b) = 2.338 b−1,

µ0(p; b) ' 0.792 p−1 (p � b), (20)

with a characteristic size (the intersection of the two asymptotes)
p0 = 0.339 b. For µ′1 we obtain

µ′1(0; b) = −0.742 b−3/2,

µ′1(p; b) ' −0.095 p−3/2 (p � b), (21)

with a characteristic size p1 = 0.254 b. Finally, for the first-order
moment, µ1 = µ′1/µ0, we derive

µ1(0; b) = −0.317 b−1/2,

µ1(p; b) ' −0.120 p−1/2 (p � b). (22)

5. First-order moment for a finite infall radius

Up to now we have assumed that the infall velocity pattern in
r−1/2 extends up to an infinite radius. A more realistic approach
is to assume a finite radius. For instance, in the inside-out col-
lapse model (Shu 1977), the collapse propagates outwards from
the center at the speed of sound. The radius of the expansion
wave is usually called the infall radius Ri, and let us call ri the
infall radius in units of R0, that is, ri ≡ Ri/R0. The envelope with
a radius greater than the infall radius is approximately static,
while the material inside the infall radius is in free fall. Thus, let
us assume that the infall occurs only for radii r < ri. The static
material will only contribute to the ambient-gas line-emission,
centered on vz = 0, and will not be taken into account.

5.1. Line profile (finite infall radius)

The effect of having a finite infall radius is that the equal-LOS-
velocity surfaces are truncated at a radius r = ri. Thus, for the
red-wing emission, a part of the equal-LOS-velocity surface
near the center of the core will no longer be hidden from the
observer by the part facing the observer. A critical value of p
is that for which the sphere of radius ri intersects the equal-
LOS-velocity surfaces at the points (p = pm, z = zm), that is,
r2

i = p2
m + z2

m = 3p2
m, or pm = ri/

√
3. As illustrated in Fig. 9,

for a given projected distance p < ri/
√

3, the blue-wing emis-
sion, like the infinite infall radius case, comes from material
along the line of sight at radii p < r < (p2 + z2

m)1/2 =
√

3p.
However, the red-wing emission, unlike the infinite infall radius
case, comes from two regions: material along the line of sight at
radii

√
3p < r < ri, in the part of the equal-LOS-velocity surface

facing the observer, and material closer to the center, located at
−zb < z < 0, which is no longer hidden by the part of the equal-
LOS-velocity surface facing the observer because this part of the
equal-LOS-velocity surface would be outside the infalling sphere
of radius ri. The material in the part of the equal-LOS-velocity
surface facing the observer has LOS velocities va < vz < vm,
where va is the velocity of the material where the line of sight
intersects the sphere of radius ri. The material closer to the center
has LOS velocities 0 < vr < va (see Fig. 10).

Let us use the reduced coordinate q ≡ p/ri. The correspond-
ing critical value of q is q = 1/

√
3 (see Fig. 9). For values q <

1/
√

3, only the red-wing emission is affected. For q ≥ 1/
√

3 the
line becomes symmetric because none of the red wing emission
at any LOS velocity is hidden by the part of the equal-LOS-
velocity surface facing the observer, and the moment µ1 becomes
zero (see Figs. 9 and 10). For q ≥ 1 all the wing emission
disappears (µ0 = µ1 = 0).

5.2. First-order moment (finite infall radius)

The details of the derivation of an analytical expression for the
moments, for a finite infall radius are given in Appendix B.
The moments µ0, µ′1, and µ1 obtained are no longer power
laws of the projected distance p, although the dependence on
ri can be separated from the explicit dependence on p using
the parameter q = p/ri. In this way, the resulting expressions
are similar to those obtained for the case of an infinite infall
radius,

µ0(p) = H0(q) p−1

µ′1(p) = H1(q) p−3/2

µ1(p) = [H1(q)/H0(q)] p−1/2

 (0 ≤ q < 1/
√

3),
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Fig. 9. For a given projected distance p < ri/

√
3 the wing emission

comes from the thick part of the line of sight, for radii less than ri. The
emission from the thin part of the line of sight is hidden to the observer.
For the blue wing, the observer can observe the emission coming from
z = 0 (with vz = 0) to z = zm (with vz = −vm). For the red wing, the
observer can observe the emission coming from z = −za (with r = ri,
vz = va) to z = −zm (with vz = +vm), and, since the corresponding part of
the equal-LOS-velocity surface facing the observer is missing (it would
be outside the infall radius), from z = 0 (with vz = 0) to z = −zb (with
vz = va). The velocity va is the LOS velocity of the equal-LOS-velocity
surface that intersects the sphere r = ri at a projected distance p, i.e.
va = vz(p,−za) = vz(p,−zb).
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√
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µ0(p) = 2B0 p−1

µ′1(p) = µ1(p) = 0

}
(1/
√

3 ≤ q < 1), (23)

µ0(p) = µ′1(p) = µ1(p) = 0 (q ≥ 1),
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µ
0

-µ
1
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i
 = 1

Fig. 11. Log–log plot of µ0 and −µ1 as a function of the projected
distance p, for an infall radius ri = 1 (solid lines) and for an infinite
infall radius (dashed lines).

with H0 and H1 given by (see Fig. B.2)

H0(q) = 2B0 + [q(1 − q2)]1/2(q′1/2 − q1/2) −G0(q) + G0(q′),

H1(q) =
q
2

(1 − q2)(q′1/2 − q1/2) −G1(q) + G1(q′), (24)

where q′ is an auxiliary parameter depending on q only (see
Fig. B.1),

q′ =
1 − q2[

1 − q2

2
+

q
2

(4 − 3q2)1/2

]1/2 , (25)

and

G0(y) =
π

8
− y

4

√
1 − y2 − 1

4
arcsin y,

G1(y) =
2

21
− y

3/2

2

(
1
3
− y

2

7

)
, (26)

B0 =

√
2

4
+
π

8
− 1

4
arcsin

1√
3

= 0.592.

An example of the moments obtained can be seen in Fig. 11.
The limiting values of the moments for ri → ∞, correspond-

ing to q = 0, q′ = 1, coincide with the results derived for an
infinite infall radius (Eqs. (17) and (18)),

H0(0) = H0 = 2B0 − π/8, µ0 = 0.792 p−1,

H1(0) = H1 = − 2
21

= −0.0952, µ1 = −0.120 p−1/2,
(27)

while the limiting values for p = ri/
√

3, corresponding to q =

q′ = 1/
√

3, are

H0(1/
√

3) = 2B0, µ0 = 1.185 p−1,

H1(1/
√

3) = 0, µ1 = 0.
(28)
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5.3. Finite angular resolution (finite infall radius)

In this case, µ0 and µ′1 are no longer power laws of p, but have
a characteristic scale size given by ri. Thus, unlike the infinite
infall radius case, the beam convolution has to be performed for
every value of ri, and the result will depend on both ri and b. For
ri very large, the results for an infinite infall radius of the last
section are reproduced.

6. Practical units

In the previous analysis all lengths, z, p, ri, b, are measured in
units of the reference radius R0; velocities in units of V0, the
infall velocity at the reference radius R0; and temperatures in
units of T0, the temperature at the reference radius R0. The pro-
jected distance p in practical units, that is, θ in arcsec, can be
obtained from p in units of R0 through2

[
θ

arcsec

]
= p

[ R0

kau

] [ D
kpc

]−1

, (29)

where D is the distance to the source. The value of R0 is arbitrary,
but the values of R0 and V0 are related to the central mass of the
protostar onto which the accretion is taking place, M∗,

G M∗
R0

=
1
2

V2
0 , (30)

or, in practical units,[
V0

km s−1

]
= 1.331

[
M∗
M�

]1/2 [ R0

kau

]−1/2

. (31)

6.1. Infinite infall radius

The first-order moment at the origin (Eq. (22)) in practical units
becomes,[
µ1(0; θb)
km s−1

]
= −0.317

[ V0

km s−1

] [ R0

kau

]1/2 [
D

kpc

]−1/2 [
θb

arcsec

]−1/2

,

(32)
while, for θ � θb,[
µ1(θ; θb)
km s−1

]
' −0.120

[ V0

km s−1

] [ R0

kau

]1/2 [
D

kpc

]−1/2 [
θ

arcsec

]−1/2

.

(33)

Taking into account Eq. (30), we have for θ = 0[
µ1(0; θb)
km s−1

]
= −0.423

[
M∗
M�

]1/2 [
D

kpc

]−1/2 [
θb

arcsec

]−1/2

, (34)

and for θ � θb,[
µ1(θ; θb)
km s−1

]
' −0.160

[
M∗
M�

]1/2 [
D

kpc

]−1/2 [
θ

arcsec

]−1/2

. (35)

Examples of µ1(θ; θb) for some values of θb and M∗ are
shown in Figs. 13 and 14. A value of the central mass can be

2 1 kau = 1000 au = 0.0048 pc, is a convenient unit when dealing with
typical circumstellar sizes. It is the physical size corresponding to an
angular size of 1′′ at a distance of 1 kpc.

0.01 0.1 1
p

0.01

0.1

1

10

100

|µ
|

µ0

-µ1

b = 0
b = 0.1

Fig. 12. Log–log plot of µ0 and −µ1 as a function of the projected
distance, for an infall radius ri = 1 and beamwidth b = 0.1 in reduced
units (solid lines) and b = 0 (dashed lines).

derived directly from the value of the first-order moment at the
origin,[

M∗
M�

]
= 5.6

[−µ1(0; θb)
km s−1

]2 [
D

kpc

] [
θb

arcsec

]
. (36)

It may seem surprising that the value of the first-order
moment at the origin (Eq. (34)) does not depend on the tem-
perature T0. This is because µ1 is the normalized moment µ′1/µ0,
and the dependence on T0 of both µ′1 and µ0 cancels. However,
µ1 does depend on the temperature gradient, that is, on the
power-law index of temperature law (β in Eq. (A.36)). For
instance, for β = 0 (no temperature gradient), µ1 is zero.

6.2. Finite infall radius

In this case the 2D convolution has to be computed for any value
of the infall radius. A possible strategy for computing the first-
order moment is the following.
1. Choose a value for R0, for instance R0 = 1 kau, so that the

infall radius in reduced coordinates is ri = [Ri/kau].
2. For a given value of ri, and a range of values of p, construct

the functions µ0 = H0(q) p−1 and µ′1 = H1(q) p−3/2 (Eq. (23))
in reduced coordinates (p and ri in units of R0).

3. Transform the p coordinate to practical units, [θ/arcsec] =
p [D/kpc]−1 (Eq. (29)). Compute the beam 2D-convolution
(Eq. (D.2)) of µ0 and µ′1, and obtain µ1(θ; θb,Ri) = µ′1/µ0.
See in Fig. 12 an example of the resulting µ0 and µ1 after
beam convolution.

4. The resulting first-order moment is in units of V0. To have it
in km s−1, scale µ1 by a factor 1.331 [M∗/M�]1/2, where M∗
is the central mass (Eq. (31)).

Examples of µ1(θ; θb,Ri) for some values of θb, Ri, and M∗ are
shown in Figs. 15 and 16.

Let us see now what can be derived from the value of the
first-order moment at the origin. The value of µ1 for θ = 0
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Fig. 13. First-order moment µ1 for an infinite infall radius, as a function
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0.5, 1, 2, 5, and 10 kau, where D is the distance to the source. The
vertical axis scales as M∗1/2. The left axis is µ1 for a central mass M∗ =
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(Eq. (B.38)) in practical units becomes[
µ1(0; θb,Ri)

km s−1

]
=

J1(s)
J0(s)

[ V0

km s−1

] [ R0

kau

]1/2 [
D

kpc

]−1/2

×
[

θb

arcsec

]−1/2

, (37)

where s = Ri/(Dθb), and J0 and J1 are given by Eq. (B.37).
Taking into account Eq. (30), we have[
µ1(0; θb,Ri)

km s−1

]
= J(s)

[
M∗
M�

]1/2 [
D

kpc

]−1/2 [
θb

arcsec

]−1/2

, (38)
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where J(s) = 1.331 J1(s)/J0(s). The function J(s), calculated
numerically, is shown in Fig. 17. The asymptotic expression for
large infall radii, Ri � Dθb,

[
µ1(0; θb,Ri�Dθb

km s−1

]
' −0.423

[
M∗
M�

]1/2 [
D

kpc

]−1/2 [
θb

arcsec

]−1/2

,

(39)

coincides, as expected, with the expression derived for an infinite
infall radius, Eq. (34). In the case of a poor angular resolution
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Fig. 17. Function J(s) in the expression of µ1(0; θb,Ri), showing its
asymptotic values for s � 1 and s � 1.

compared with the infall radius (θb � Ri/D), we obtain[
µ1(0; θb�Ri/D,Ri)

km s−1

]
' −0.080

[
M∗
M�

]1/2 [ Ri

kau

]−1/2

. (40)

The value at the origin of the first-order moment in the case
of a finite infall radius, µ1(0; θb,Ri), in contrast with the infinite
infall radius case, does not provide a unique value of the central
mass, unless the infall radius is known. There is a degeneracy
between the infall radius and the central mass: different pairs of
values of the infall radius and central mass produce the same
value of the first-order moment at the origin. In order to disen-
tangle this degeneracy, it is necessary to fit not only the value
at the origin, but also the variation of the observed first-order
moment as a function of the projected distance.

7. Application of the central-blue-spot infall
hallmark to real data

7.1. G31.41+0.31 HMC

G31.41+0.31 HMC (hereafter G31) is a hot molecular core whose
distance was estimated to be 7.9 kpc, but recent determinations
(Reid et al., in prep.) give a value of 3.7 kpc for its distance. Infall
motions in G31 have been reported by Girart et al. (2009) from
inverse P-Cygni profiles, and by Mayen-Gijon et al. (2014) from
VLA observations of the ammonia inversion transitions (2, 2),
(3, 3), (4, 4), (5, 5), and (6, 6) showing a central blue-spot in the
first-order moment maps.

Here we are analyzing the first-order moment maps shown
in Fig. 2 of Mayen-Gijon et al. (2014) (see Fig. 18). The half-
power beamwidth of the observations were 0.′′33 for the (2, 2),
(3, 3), and (6, 6) maps, 0.′′16 for the (4, 4) map, and 0.′′37 for the
(5, 5) map. The value of the first-order moment as a function
of the angular distance was obtained for the five maps by aver-
aging the first-order moment in concentric rings of width 0.′′1
centered on the average position of the peak of the blue spot,
α(J2000) = 18h47m34.s32, δ(J2000) = −01◦12′46.′′1. In Fig. 19,

Fig. 18. Maps of G31 first-order (color scale) and zeroth-order moment
(contours) for the ammonia inversion transitions (2, 2) to (6, 6) (Mayen-
Gijon et al. 2014). The color scale, the same for all panels, ranges from
94 to 101 km s−1. The contours are in steps of 10% of the peak value
for all the maps, except for the (4, 4) transition, for which the steps are
20%. The beam is shown in the lower right corner of each panel.

we present the first-order moment profiles obtained. We consid-
ered that the velocity far from the center was 97.4 km s−1, the
value used by Mayen-Gijon et al. (2014), which is consistent with
the values of the systemic velocity quoted for G31, ranging from
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Fig. 19. G31 first-order moment for the ammonia inversion transi-
tions (2, 2) (black line and open circles), (3, 3) (red line and filled
circles), (4, 4) (blue line and filled squares), (5, 5) (magenta line and
open squares), and (6, 6) (green line and filled diamonds) (Mayen-Gijon
et al. 2014), as a function of angular distance, measured for rings of
width 0.′′1 and average radius θ. The error bars are the rms of the veloc-
ity inside each ring. The right-hand vertical axis shows the velocities
obtained from the first-order moment maps, while the left-hand verti-
cal axis shows the velocity with respect to the systemic velocity of G31,
taken as Vsys = 97.4 km s−1.

96.26 km s−1 (Beltrán et al. 2005) to 98.8 km s−1 (Cesaroni et al.
1994). The first-order moment of the different transitions show
very similar profiles, with a value of approximately −3 km s−1

for small angular distances, except for the (2, 2) transition, which
shows a shallower dip in velocity. This could be due to a lower
opacity of the (2, 2) line, and partial blending of the central line
with the inner satellite lines, and we will no longer consider
this transition. By application of Eq. (36) we see that a value of
∼−3 km s−1 for the first-order moment means roughly a central
mass of the order of 50 M�.

In order to obtain a more accurate value of the central mass,
the hallmark model was calculated for the beam size of each tran-
sition, and fitted to the observed data for different values of the
infall radius and the central mass. For an infinite infall radius
the best fit was found for a central mass of 44 M�, with a resid-
ual χ2 statistic for ν = 39 degrees of freedom (the total number
of rings of all transitions used in the fit, minus 1), χ2 = 36.6,
which gives a reduced χr = (χ2/ν)1/2 = 0.97. For finite val-
ues of the infall radius we obtained higher values of the central
mass. For Ri = 20 kau (corresponding to an angular radius of
5.′′4 at 3.7 kpc), we obtained a better fit, with a central mass
M∗ = 69 M� (χ2 = 21.2, χr = 0.74), while for Ri = 5 kau (1.′′4),
a lower limit for the infall radius to be consistent with the size of
the NH3 maps, the best fit was for a central mass M∗ = 122 M�
(χ2 = 10.7, χr = 0.52) (see Fig. 20). In conclusion, the central
mass obtained is always greater than ∼44 M�, and the best fit
is obtained for values of the infall radius between 5 and 20 kau,
with central masses between ∼70 and ∼120 M�.

Osorio et al. (2009) model and the central core of G31 obtain,
assuming a distance of 7.9 kpc, a central star with a mass of
∼25 M�, a mass accretion rate of 3 × 10−3 M� yr−1, and a total
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Fig. 20. Model (black dashed line) fitted to the G31 first-order moment,
calculated for a central mass of 122 M�, an infall radius of 5 kau,
and a half-power beamwidth of ∼0.′′33 for the (3, 3), (5, 5), and (6, 6)
transitions (top), and 0.′′16 for the (4, 4) transition (bottom).

luminosity of 2 × 105 L�. The luminosity, scaled to the dis-
tance of 3.7 kpc adopted here, is 4.4 × 104 L�. A single star
with a mass equal to the central mass derived here would have
a luminosity two orders of magnitude higher. This apparent lack
of luminosity can be explained considering, as usually found in
high-mass star forming regions, that there is not a single high-
mass star at the center of G31, but a cluster of less massive stars.
In the case of G31, recent high-angular resolution ALMA con-
tinuum observations (Beltrán et al., in prep.) reveal the presence
of at least four cores at the center of G31.

If we assume that the stars of the cluster at the center of
G31 have masses that follow the Salpeter initial mass function
(Salpeter 1955) there would be a few high-mass young stellar
objects, probably associated with the four cores detected, which
could account for most of the total luminosity observed. A higher
number of low-mass young stellar objects yet undetected, with
little contribution to the overall luminosity, could total a mass of
70–120 M� for the cluster.

7.2. B335

B335 is an isolated Class 0 protostar with a bolometric lumi-
nosity of ∼1 L�, at a distance of 105 pc (Olofsson & Olofsson
2009). Several authors claim the detection of infall (Kurono et al.
2013; Evans et al. 2015). Here we are analyzing two observa-
tions, one of H13CO+ (J = 1–0) at 87 GHz, with a moderate
angular resolution, combining data from the 45 m Nobeyama
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Fig. 21. B335 zeroth-order (contours) and first-order moment (color
scale) of the H13CO+ (J = 1–0) line, obtained from the channel maps of
Kurono et al. (2013). Contours are in steps of 511 mJy beam−1 km s−1.
The color scale at the right border is in m s−1. The (0, 0) position cor-
responds to α(J2000) = 19h37m00.s89, δ(J2000) = +07◦34′09.′′6. The
synthesized beam is shown in the lower left corner.

telescope and the Nobeyama Millimeter Array (Kurono et al.
2013), and the other of 13CO (J = 2–1) at 220 GHz, with very
high angular resolution, carried out with the Atacama Large
Millimeter/Submillimeter Array (ALMA; Yen et al. 2015).

Regarding the Nobeyama data, the beam obtained for the
combined data from both instruments was ∼5.′′0, and the spectral
resolution was 0.108 km s−1. The channel maps of the H13CO+

emission were retrieved from Fig. 5 of Kurono et al. (2013),
and the data cube obtained was resampled with a cell size of
1′′. The zeroth and first-order moments obtained are shown in
Fig. 21. The value of the first-order moment as a function of
the angular distance was obtained by averaging the first-order
moment in concentric rings of width 2′′ centered on the position
of the continuum compact source, α(J2000) = 19h37m00.s89,
δ(J2000) = +07◦34′09.′′6 (Yen et al. 2015), the (0, 0) position
in Figs. 21 and 22. The values obtained are shown in Fig. 23 (top
panel). The error bars are the rms dispersion of velocities inside
each ring, added quadratically to the uncertainty due to the finite
spectral resolution, the same for all rings.

The ALMA data had an angular resolution of ∼0.′′31, and the
spectral resolution was 0.166 km s−1. The first-order moment for
all the line, µ1, is shown in the middle panel of Fig. 22. As can be
seen, the central blue spot is not centered on the position of the
continuum compact source (plus sign), but is offset and extends
to the southeast. The angular resolution of the data corresponds
to a linear resolution of 33 au at a distance of 105 pc. At this
small scale, the kinematics can be dominated by the rotation of
the protostellar disk, and infall can be no longer spherically sym-
metric, as assumed by the hallmark model. In order to check the
validity of the model, we also computed the first order moment
separately for the redshifted channels, with velocity higher than
the systemic velocity, µred

1 , and for the blueshifted channels (with
velocity lower than Vsys), µblue

1 . The hallmark model predicts that

Fig. 22. B335 first-order moment of the 13CO (J = 2–1) line
observed with ALMA. Top: moment of the red channels, with velocities
higher than the systemic velocity, Vsys (color scale: 8.9–10.1 km s−1).
Middle: moment of all the channels (color scale: 7.4–9.2 km s−1).
Bottom: moment of the blue channels, with velocities lower than Vsys
(color scale: 6.8–8.0 km s−1). The (0, 0) position, marked with a plus
sign, is the same as in Fig. 21. The synthesized beam is shown in the
lower left corner of the middle panel.

µred
1 shows a central red spot and µblue

1 a central blue spot, higher
in absolute value than the first-order moment of the full line. As
can be seen in the top and bottom panels of Fig. 22, this is what is
observed for µred

1 and µblue
1 , with quite well centered red and blue

spots. The values of µ1, µred
1 , and µblue

1 as a function of the angular
distance were calculated for concentric rings of 0.′′1 width, cen-
tered on the position of the continuum compact source. The error
bars were calculated in the same way as for the Nobeyama data.
The moments as a function of the angular distance θ, are shown
in Fig. 23 (bottom panel). As can be seen, the three moments
follow the same kind of dependence on the projected distance,
and we will see that they can be fitted by power laws of index
−1/2, convolved with the beam, as predicted by the hallmark
model. Thus, the gas kinematics for the range of projected dis-
tances sampled by ALMA, from 0.′′1 to 0.′′8 (10–84 au), appears
to be dominated by infall.

The hallmark model was calculated and fitted simultaneously
to the Nobeyama first-order moment µ1, and to the ALMA µblue

1
and µred

1 (but not to µ1). Since the Nobeyama data are very sen-
sitive to the value adopted for the systemic velocity, we fitted
both the value of the systemic velocity and the central mass.
We tested the infall radius reported by Kurono et al. (2013),
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Fig. 23. Same as Fig. 19 for B335. Top: H13CO+ (J = 1–0) line
observed at Nobeyama (2′′ ring width). Bottom: 13CO (J = 2–1) line
observed with ALMA (0.′′1 ring width; µred

1 , red line and symbols; µ1,
black line and symbols; µblue

1 , blue line and symbols) The dashed lines
in the top and bottom panels show the best simultaneous fit to the
Nobeyama moment µ1 (beamwidth 5.′′0), and the ALMA moments µblue

1
and µred

1 (beamwidth 0.′′31). The best fit is obtained for an infinite infall
radius, a systemic velocity Vsys = 8.29 km s−1, and a central mass of
0.09 M�. The black dotted line in the bottom panel is not a fit, but the
value of µ1 predicted by the best-fit model for the ALMA first-order
moment.

2900 au (corrected from their assumed distance of 150 pc), but
a better fit was obtained with a larger infall radius. The best fit
was obtained for an infinite infall radius, for a systemic veloc-
ity Vsys = 8.29 km s−1, and central mass M∗ = 0.09 M� (dashed
lines in the top and bottom panels of Fig. 23). The goodness of
the fit is given by a χ2 statistic for ν = 27 degrees of freedom,
χ2 = 29.9, corresponding to a reduced χr = (χ2/ν)1/2 = 1.05, an
indication that the model fits well the data within the uncertain-
ties. As an additional check, we computed the predicted value
of the first-order moment for the ALMA data of the full line,
µ1, (dotted line in the bottom panel of Fig. 23), which is a lin-
ear combination of µblue

1 and µred
1 , that is, µ1 = (µblue

0 /µ0) µblue
1 +

(µred
0 /µ0) µred

1 . As can be seen in the figure, the values predicted
for µ1 match well those observed.

We can conclude that the kinematics of the gas in B335, for
the linear scales sampled by ALMA and Nobeyama, from ∼10
to ∼2500 au, in other words, more than two orders of magni-
tude, can be explained by a simple model of infall onto a central
protostar of ∼0.1 M�. This can be considered as an outstanding
result of the central-blue-spot infall hallmark model.

Fig. 24. NH3 (1, 1) line central velocity of the Guitar Core in L1287.
The central blue spot is blueshifted ∼0.5 km s−1 with respect to the
ambient gas. The embedded sources in the center are indicated by dots
(mm, Juárez et al. 2019), and crosses (cm, Anglada et al. 1994). The
synthesized beam is shown in the lower-right corner of the map.

7.3. LDN 1287

LDN 1287 (hereafter L1287) is a molecular cloud located at a
distance of 929 pc, associated with an energetic bipolar CO out-
flow (Yang et al. 1991). The source was mapped with a single
dish in NH3 (Estalella et al. 1993; Sepúlveda et al. 2011). A
cluster of mm sources has been detected at the center of L1287
(Juárez et al. 2019), one of the mm sources being associated with
VLA 3 (Anglada et al. 1994), a jet-like cm-continuum source that
appears to be driving the outflow.

Here we are analyzing VLA observations of the NH3 (1, 1)
and (2, 2) transitions, which show a complicated structure with
a complex kinematics (Sepúlveda et al. in prep.). The NH3
lines were analyzed by means of the Hyperfine Structure Tool
(HfS) (Estalella 2017). After careful inspection of the spectra,
three different velocity components were identified, with non-
overlapping velocity ranges (Guitar Core, Blue Filament, and
Red Filament). The Guitar Core does not show any sign of inter-
action with the embedded young stellar objects (no increase in
linewidth, nor in rotational temperature at the projected position
of the embedded sources). Our results suggest that the Guitar
core is a very young protostellar core. Given the poor veloc-
ity resolution of the observations, the only way to separate the
emission of the Guitar Core from that of the filaments was
to fit Gaussian components to the observed spectra. Thus, the
asymmetry of the line was inferred from the shift of the central
velocity of the line fitted. Nevertheless, a compact spot of ∼10′′
in diameter of blueshifted velocities appears at the center of the
Guitar Core (see Fig. 24).

The central velocity of the Guitar Core, obtained from the
HfS fits, was averaged in concentric rings 1′′ wide, centered on
the emission peak, up to a radius of 20′′. The velocity profile
obtained is shown in Fig. 25. The error bars are the rms disper-
sion of the velocities averaged in each ring, added quadratically
to the error of the average value of central velocity obtained from
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Fig. 25. Same as Fig. 19 for the Guitar Core in L1287, for the NH3
(1, 1) (blue circles) and (2, 2) lines (red circles). The rings used were
1′′ wide, and a systemic velocity Vsys = −18.55 km s−1 was adopted.
The best fit was obtained for an infinite infall radius, and a central mass
M∗ = 4.4 M� (black dashed line).

HfS. The average velocity at large distances from the peak (the
systemic velocity of the Guitar Core), −18.54 km s−1, has been
subtracted from the values of the central velocity. The best fit to
the (1, 1) and (2, 2) data, for a beamwidth of 3.′′48, was obtained
for a central mass of 4.8 M� and a infinite infall radius (dashed
line in Fig. 25). The goodness of the fit is indicated by the value
of the χ2 statistic for ν = 39 degrees of freedom (the total num-
ber of rings used in the fit, minus 1), χ2 = 42.7, which gives a
reduced χr = (χ2/ν)1/2 = 1.05.

8. Conclusions

The central-blue-spot infall hallmark (Mayen-Gijon et al. 2014)
was studied quantitatively, taking as a basis the work of Anglada
et al. (1987, 1991). The assumptions were that the line emission
was optically thick, the gravitational infall motions dominated
the kinematics over turbulent and thermal motions, the infall
velocity and temperature were power-laws of radius and increase
inwards, with power-law indices of −1/2, and that the Sobolev
approximation was valid. With these assumptions an analytical
expression for the first-order moment as a function of the pro-
jected distance was derived, for the cases of infinite and finite
infall radius. The effect of a finite angular resolution was also
studied, but the convolution with the beam has to be calculated

numerically. These results were applied to existing data of sev-
eral star-forming regions (G31, B335, and L1287), obtaining
good fits to the first-order moment maps, and deriving values
of the central masses onto which the infall is taking place. The
values obtained for the central masses are 70–120 M� for G31,
0.1 M� for B335, and 4.8 M� for the Guitar Core of L1287.

In conclusion, the central-blue-spot infall hallmark appears
to be a robust and reliable indicator of infall.
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Appendix A: Calculation of the moments for an
infinite infall radius and arbitrary power-law
indices

A.1. Intensity profile (infinite infall radius)

Let us assume that the infall velocity and temperature in an
infalling molecular gas core are given by power laws with
arbitrary power-law indices, −α and −β,

V/V0 = (R/R0)−α,
T/T0 = (R/R0)−β. (A.1)

The development made in Sect. 2 for α = β = 1/2 can be
generalized for any positive values of the power-law indices,
α, β > 0. The projected distance and temperature (Eq. (4)) are
now

p =
(
|z/vz|2/(α+1) − z2

)1/2
,

t = |vz/z|β/(α+1). (A.2)

The expressions for z∗, zm, pm (Eq. (5)) become

z∗ = |vz|−1/α,

zm = (α + 1)−(α+1)/(2α)v−1/α
z , (A.3)

pm = α1/2zm = α1/2(α + 1)−(α+1)/(2α)v−1/α
z ,

and t(pm) (Eq. (6)) is now

t(pm) = (α + 1)β/(2α)v
β/α
z . (A.4)

A.2. Line profile (infinite infall radius)

The equations derived in Sect. 3 can be generalized as follows.
The temperature and LOS velocity (Eq. (8)) become

vz =
−z

(p2 + z2)(α+1)/2 ,

t =
1

(p2 + z2)β/2
. (A.5)

The velocity vm and temperatures t1 and t2 (Eqs. (9), (10),
(12)) are now given by

vm = αα/2(α + 1)−(α+1)/2 p−α,
t1 = [α/(α + 1)]β/2 p−β, (A.6)
t2 = p−β.

A.3. Moments calculation (infinite infall radius)

From Eq. (A.5) we can obtain vz as an explicit function of t,

|vz| = tα/β(1 − p2t2/β)1/2, (A.7)

where the blue-wing profile (vz < 0) is obtained for t1 < t < t2,
and the red-wing profile (vz > 0) for 0 < t < t1 (see Eq. (A.6)).

In order to calculate the first-order normalized moment µ1(p)
as a function of the projected distance,

µ1(p) =
µ′1
µ0
, (A.8)

we need to evaluate the integrals

µ0 =

∫
line

t dvz = vzt −
∫
vz dt,

µ′1 =

∫
line
vzt dvz =

1
2
v2

z t − 1
2

∫
v2

z dt. (A.9)

A.4. Zeroth-order moment (infinite infall radius)

For the blue wing, the limits of integration are from (t = t1, vz =
−vm) to (t = t2, vz = 0). The resulting integral for µblue

0 is

µblue
0 = vmt1 +

∫ t2

t1
|vz| dt = vmt1 +

∫ t2

t1
tα/β(1 − p2t−2/β)1/2 dt,

(A.10)

where vm, t1, and t2 have already been defined in Eq. (A.6). The
first term is

vmt1 = α(α+β)/2(α + 1)−(α+β+1)/2 p−(α+β). (A.11)

The integral of the second term has the same dependence
on p. This can be seen with the change of variables x = pt1/β,
resulting in∫ t2

t1
|vz| dt = p−(α+β)

∫ 1

[α/(α+1)]1/2
βxα+β−1

√
1 − x2 dx. (A.12)

It is useful to define the function G0,

G0(y) =

∫ 1

y

βxα+β−1
√

1 − x2 dx, (A.13)

which, in general, is not analytical, but is convergent for α + β >
0, and the function to integrate is continuum for x > 0. With this
notation, the zeroth-order moment can be expressed as

µblue
0 = B0 p−(α+β), (A.14)

with

B0 = α(α+β)/2(α + 1)−(α+β+1)/2 + G0

(
[α/(α + 1)]1/2

)
. (A.15)

Similarly, for the red wing the limits of integration are from
(t = 0, vz = 0) to (t = t1, vz = vm). The resulting integral for µred

0
is

µred
0 = vmt1 −

∫ t1

0
|vz| dt = vmt1 +

∫ t1

0
tα/β(1 − p2t−2/β)1/2 dt.

(A.16)

Using the same notation used for the blue wing, we can
obtain

µred
0 = R0 p−(α+β), (A.17)

with

R0 = B0 −G0(0), (A.18)

where

G0(0) =

∫ 1

0
βxα+β−1

√
1 − x2 dx, (A.19)
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is analytical for α + β > 0, and its value is

G0(0) =
β
√
π

4
Γ
[
(α + β)/2

]
Γ
[
(α + β + 3)/2

] , (A.20)

where Γ is the Gamma function.
Thus, the expression for the total zeroth-order moment is

µ0 = (B0 + R0) p−(α+β) = H0 p−(α+β), (A.21)

with

H0 = 2B0 −G0(0) = 2α(α+β)/2(α + 1)−(α+β+1)/2

− β
√
π

4
Γ
[
(α + β)/2

]
Γ
[
(α + β + 3)/2

] + 2G0

(
[α/(α + 1)]1/2

)
. (A.22)

A.5. First-order moment (infinite infall radius)

For the blue wing, using the same limits of integration as for the
zeroth-order moment, we have (see Fig. 5)

µ′1
blue

= −1
2
v2

mt1 − 1
2

∫ t2

t1
v2

z dt. (A.23)

The first term is

1
2
v2

m =
1
2
αα+β/2(α + 1)−(α+β/2+1) p−(2α+β), (A.24)

and the integral can be evaluated using the same change of
variables as for the zeroth-order moment, obtaining

1
2

∫ t2

0
v2

z dt = G1

(
[α/(α + 1)]1/2

)
p−(2α+β), (A.25)

where we defined the function G1 as

G1(y) =

∫ 1

y

β

2
x2α+β−1(1 − x2) dx, (A.26)

which is analytical, and convergent for 2α + β > 0,

G1(y) =
β

(2α + β)(2α + β + 2)
− βy

2α+β

2

[
1

2α + β
− y2

2α + β + 2

]
.

(A.27)

Thus, the unnormalized first-order moment of the blue wing
can be expressed as

µ′1
blue

= B1 p−(2α+β), (A.28)

with

B1 = −1
2
αα+β/2(α + 1)−(α+β/2+1) −G1

(
[α/(α + 1)]1/2

)
. (A.29)

Similarly, for the red wing we have

µ′1
red

=
1
2
v2

mt1 − 1
2

∫ t1

0
v2

z dt, (A.30)

that can be expressed as

µ′1
red

= R1 p−(2α+β), (A.31)

with

R1 =
1
2
αα+β/2(α + 1)−(α+β/2+1) + G1

(
[α/(α + 1)]1/2

)
−G1(0).

(A.32)

Note that B1 and R1 cancel each other partially, so that

B1 + R1 = −G1(0) = − β

(2α + β)(2α + β + 2)
. (A.33)

Thus, the expression for the total unnormalized first-order
moment is simply

µ′1 = H1 p−(2α+β), (A.34)

with

H1 = B1 + R1 = − β

(2α + β)(2α + β + 2)
. (A.35)

The final results, for an infinite infall radius, can be summa-
rized as follows.

µ0 = H0 p−(α+β),

µ′1 = H1 p−(2α+β),

µ1 = [H1/H0] p−α, (A.36)

H0 = 2α(α+β)/2(α + 1)−(α+β+1)/2 − β
√
π

4
Γ
[
(α + β)/2

]
Γ
[
(α + β + 3)/2

]
+ 2G0

(
[α/(α + 1)]1/2

)
,

H1 = − β

(2α + β)(2α + β + 2)
,

where Γ is the Gamma function, and

G0(y) =

∫ 1

y

βxα+β−1
√

1 − x2 dx, (A.37)

which, in general, has to be evaluated numerically.

A.6. Particular case (infinite infall radius) for power-law
indices 1/2

For the particular case of α = β = 1/2, the former expressions
are simpler. In particular, the integral G0 is analytical,

G0(y) =

∫ 1

y

1
2

√
1 − x2 dx =

π

8
− y

4

√
1 − y2 − 1

4
arcsin y, (A.38)

with

G0(0) =
π

8

G0

(
1/
√

3
)

=
π

8
−
√

2
12
− 1

4
arcsin

1√
3
, (A.39)

resulting in

B0 =
π

8
+

√
2

4
− 1

4
arcsin

1√
3

= 0.592,

R0 = B0 − π8 = 0.200, (A.40)
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and

H0 = B0 + R0 =
π

8
+

√
2

2
− 1

2
arcsin

1√
3

= 0.792. (A.41)

For the first-order moment we have

G1(y) =
2

21
− y

3/2

2

(
1
3
− y

2

7

)
,

G1

(
1/
√

3
)

=
2 − 31/4

21
, (A.42)

resulting in

B1 = − 2
21
− 4

63
31/4 = −0.179,

R1 =
4

63
31/4 = 0.084, (A.43)

and the value of H1 is

H1 = B1 + R1 = − 2
21

= −0.095. (A.44)

It can be useful to give the normalized first-order moment
separately for the blue and red wings,

µblue
1 = [B1/B0] p−1/2 = −0.302 p−1/2,

µred
1 = [R1/R0] p−1/2 = 0.418 p−1/2, (A.45)

which have the same power-law dependence on the projected
distance as µ1.

In conclusion, for the total zeroth and first-order moments we
have

µ0 = H0 p−1 = 0.792 p−1,

µ′1 = H1 p−3/2 = −0.095 p−3/2, (A.46)

µ1 = [H1/H0] p−1/2 = −0.120 p−1/2.

Appendix B: Calculation of the moments for a
finite infall radius and arbitrary power-law
indices

The critical value of the reduced coordinate q = p/ri, for an arbi-
trary value of the power-lax index α, is q = [α/(α + 1)]1/2. For
values q < [α/(α+ 1)]1/2, only the red-wing emission is affected;
for q ≥ [α/(α + 1)]1/2 the line becomes symmetric (µ1 = 0); for
q ≥ 1 all the wing emission disappears (µ0 = µ1 = 0).

B.1. Line profile (finite infall radius)

In order to calculate the moments of the red wing emission we
need the values of va, ta, and tb as a function of p and q (see
Fig. 10). For this, we need the values of za and zb, the z coordinate
of the two intersections of the equal-LOS-velocity surface with
the line-of-sight.

The distance za is obtained readily from r2
i = p2 + z2

a, which
gives

za = q−1(1 − q2)1/2 p, (B.1)

and, from Eq. (A.6) we have

va = qα(1 − q2)1/2 p−α,
ta = qβp−β. (B.2)

0 0.1 0.2 0.3 0.4 0.5
q

0.6

0.7

0.8

0.9

1

q’

Fig. B.1. Plot of q′ as a function of q (case α = β = 1/2), for 0 ≤ q ≤
1/
√

3. Note that q ≤ 1/
√

3 ≤ q′ ≤ 1, and that q′ = q for q = 1/
√

3.

The distance zb requires more work. The equation of the
equal-LOS-velocity surface of velocity va (Eq. (A.6)) can be
written as

z = va(p2 + z2)(α+1)/2. (B.3)

For a given p and va, zb is a root of this equation that satisfies
0 < zb < za. It is useful to use the variable x = 1 + (z/p)2, so that
the equation to solve depends only on q and α, and becomes

x = 1 + q2α(1 − q2)xα+1. (B.4)

For rational values of α this equation is a polynomial in x.
However, in general, the root has to be found numerically. An
iterative algorithm that gives the correct root for q < [α/(α +
1)]1/2 is the following{

x0 = 1,
xn+1 = 1 + q2α(1 − q2)xα+1

n , n = 0, 1, 2, . . . (B.5)

It is useful to introduce the parameter q′, which plays a role
similar to that of q,

q′ =
p

(p2 + z2
b)1/2

= x−1/2, (B.6)

so that the temperature tb, corresponding to zb, can be expressed
as

tb = q′βp−β. (B.7)

It can be easily shown that for q < [α/(α + 1)]1/2, the param-
eter q′ is always bounded by q < q′ < 1, and that for q =
[α/(α + 1)]1/2, q′ = q (see Fig. B.1).

B.2. Zeroth-order moment (finite infall radius)

The zeroth-order moment of the blue wing, µblue
0 , does not

depend on q, and we have already seen that it can be expressed
as

µblue
0 = B0 p−(α+β). (B.8)
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The zeroth-order moment of the red wing, µred
0 , can be

calculated as

µred
0 = µblue

0 + va(tb − ta) −
∫ tb

ta
vz dt. (B.9)

Using the expressions obtained for va, ta, and tb, µred
0 can be

expressed as

µred
0 = R0(q) p−(α+β), (B.10)

where R0(q) is

R0(q) = B0 + qα(1 − q2)1/2(q′β − qβ) −G0(q) + G0(q′), (B.11)

where q′ is given by Eq. (B.6), and G0 by Eq. (A.13).
Finally, the total zeroth-order moment can be written as

µ0 = [B0 + R0(q)] p−(α+β) = H0(q) p−(α+β), (B.12)

with

H0(q) = 2B0 + qα(1 − q2)1/2(q′β − qβ) −G0(q) + G0(q′). (B.13)

B.3. First-order moment (finite infall radius)

The first-order moment for the blue wing does not depend on q,
and we have already seen that

µ′1
blue

= B1 p−(2α+β). (B.14)

The first-order moment of the red wing is the opposite of
µ′1

blue, except for a deficit of red-wing emission (see Fig. 10), so
that

µ′1
red

= −µ′1blue
+

1
2
v2

a(tb − ta) − 1
2

∫ tb

ta
v2

z dt. (B.15)

Taking into account the expressions of va, ta, and tb, the first-
order moment of the red wing can be written as

µ′1
red

= R1(q) p−(2α+β), (B.16)

where R1(q) is

R1(q) = −B1 +
q2α

2
(1 − q2)(q′β − qβ) −G1(q) + G1(q′), (B.17)

where q′ is given by Eq. (B.6), and G1 by Eq. (A.26). Thus, the
total unnormalized first-order moment is

µ′1 = [B1 + R1(q)] p−(2α+β) = H1(q) p−(2α+β), (B.18)

with H1 given by

H1(q) =
q2α

2
(1 − q2)(q′β − qβ) −G1(q) + G1(q′). (B.19)

The normalized first order moments for the blue and red
wings separately are given by

µblue
1 = [B1/B0] p−α,

µred
1 = [R1(q)/R0(q)] p−α, (B.20)

where B0, B1, R0(q), and R1(q) have already been given. Finally,
the expression obtained for the normalized first-order moment of
the whole line, µ1 = µ′1/µ0, is

µ1 =
H1(q)
H0(q)

p−α. (B.21)

B.4. Final results (finite infall radius)

Assuming infall velocity and temperature that are power laws of
the radius,

v = (R/R0)−α,
t = (R/R0)−β, (B.22)

we have, for a finite infall radius ri, with q = p/ri,

µ0(p) = H0(q) p−(α+β)

µ′1(p) = H1(q) p−(2α+β)

µ1(p) = [H1(q)/H0(q)] p−α

 (0 ≤ q < [α/(α + 1)]1/2),

µ0(p) = 2B0 p−(α+β)

µ′1(p) = µ1(p) = 0

}
([α/(α + 1)]1/2 ≤ q < 1), (B.23)

µ0(p) = µ′1(p) = µ1(p) = 0 (q ≥ 1),

with H0(q) and H1(q) given by

H0(q) = 2B0 + qα(1 − q2)1/2(q′1/2 − q1/2) −G0(q) + G0(q′),

H1(q) =
q2α

2
(1 − q2)(q′1/2 − q1/2) −G1(q) + G1(q′), (B.24)

where q′ is an auxiliary parameter

q′ = x−1/2, (B.25)

and x is the root, satisfying 0 < x < q−2, of the equation

x = 1 + q2α(1 − q2)xα+1, (B.26)

to be solved numerically (see Eq. (B.5)), and

G0(y) =

∫ 1

y

βxα+β−1
√

1 − x2 dx (to be done numerically),

G1(y) =
β

(2α + β)(2α + β + 2)

− βy
2α+β

2

[
1

2α + β
− y2

2α + β + 2

]
, (B.27)

B0 = α(α+β)/2(α + 1)−(α+β+1)/2 + G0

(
[α/(α + 1)]1/2

)
.

B.5. Particular case (finite infall radius) for power-law
indices 1/2

For the particular case of α = β = 1/2, the former expressions
are simpler. In particular, as already seen, the integral G0 is ana-
lytical, and the equation in x to find q′ = x−1/2 is a 3rd degree
polynomial,

P3(x) = q2(1 − q2)2x3 − (x − 1)2 = 0. (B.28)

Since we already know a root corresponding to za, x = q−2,
the polynomial is divisible by (x − q−2),

P3(x) = q2(x − q−2)[(1 − q2)2x2 − (2 − q2)x + 1] = 0, (B.29)
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0.01 0.1
q

0.001

0.01

0.1

1

H
(q

)

H0

-H1/H0

Fig. B.2. Log–log plot of H0 and −H1/H0 as a function of q (case
α = β = 1/2), for 0 < q < 1/

√
3.

and thus the root x (and q′) can be found analytically (see
Fig. B.1),

q′ =
1 − q2[

1 − q2

2
+

q
2

(4 − 3q2)1/2

]1/2 . (B.30)

Thus, the final results for this particular case are

µ0(p) = H0(q) p−1

µ′1(p) = H1(q) p−3/2

µ1(p) = [H1(q)/H0(q)] p−1/2

 (0 ≤ q < 1/
√

3),

µ0(p) = 2B0 p−1

µ′1(p) = µ1(p) = 0

}
(1/
√

3 ≤ q < 1), (B.31)

µ0(p) = µ′1(p) = µ1(p) = 0 (q ≥ 1),

where B0 is given by Eq. (A.40), H0 and H1 (see Fig. B.2) are
given by

H0(q) = 2B0 + [q(1 − q2)]1/2(q′1/2 − q1/2) −G0(q) + G0(q′),

H1(q) =
q
2

(1 − q2)(q′1/2 − q1/2) −G1(q) + G1(q′), (B.32)

q′ is given by Eq. (B.30), G0 is given by Eq. (A.38), and G1
results in

G1(y) =
2

21
− y

3/2

2

(
1
3
− y

2

7

)
. (B.33)

B.6. Finite angular resolution (finite infall radius) for
power-law indices 1/2

Although the first-order moment for a finite infall radius ri,
observed with a finite angular resolution, has to be calculated
numerically, we can study its value at the origin, for p = 0.
The convolution of the moments µ0(p; ri) and µ′1(p; ri) with a

Gaussian beam of unit area and half-power beamwidth b,

B(p) =
4 ln 2
πb2 e−4 ln 2 p2/b2

, (B.34)

for p = 0 is simply

µ0(0; b, ri) =

∫ ∞

0
H0(q)p−1B(p) 2πp dp,

µ′1(0; b, ri) =

∫ ∞

0
H1(q)p−3/2B(p) 2πp dp. (B.35)

It is useful to use the variable s ≡ ri/b, so that both moments
can be expressed as

µ0(0; b, ri) = 8 ln 2 J0(s) b−1,

µ′1(0; b, ri) = 8 ln 2 J1(s) b−3/2, (B.36)

where

J0(s) =

∫ ∞

0
H0(x/s) e−4 ln 2 x2

dx,

J1(s) =

∫ ∞

0
H1(x/s) x−1/2e−4 ln 2 x2

dx. (B.37)

The normalized first-order moment at the origin will be

µ1(0; b, ri) =
J1(s)
J0(s)

b−1/2. (B.38)

The asymptotic values of µ1(0; b, ri) for ri → ∞ (equivalent
to s � 1) must coincide with the expression derived with infinite
infall radius (Eq. (22)). Effectively,

J0(s � 1) ' H0(0)
∫ ∞

0
e−4 ln 2 x2

dx = H0
π1/2

4(ln 2)1/2 , (B.39)

J1(s � 1) ' H1(0)
∫ ∞

0
x−1/2e−4 ln 2 x2

dx = H1
Γ(1/4)

23/2(ln 2)1/4 ,

so that

µ1(0; b, ri�b) ' H1

H0
Γ(1/4) (ln 2)1/4(2/π)1/2 b−1/2 (B.40)

= −0.317 b−1/2,

as expected. Let us now evaluate the asymptotic expression for
µ1(0; b, ri) for b→ ∞ (equivalent to s � 1). Taking into account
that H0(q) = 0 for q > 1 and H1(q) = 0 for q > 1/

√
3,

J0(s � 1) '
∫ ∞

0
H0(x/s) dx =

∫ 1

0
H0(q)s dq = C0 s, (B.41)

J1(s � 1) '
∫ ∞

0
H1(x/s) x−1/2dx

=

∫ 1/
√

3

0
H1(q) q−1/2s1/2dq = C1s1/2,

where C0 =
∫ 1

0 H0(q) dq and C1 =
∫ 1/
√

3
0 H1(q) q−1/2dq are con-

stants to be evaluated numerically, resulting in C1/C0 ' −0.060.
Thus,

µ1(0; b � ri, ri) =
J1(s � 1)
J0(s � 1)

b−1/2 ' C1

C0
s−1/2b−1/2 (B.42)

' −0.060 r−1/2
i .
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Appendix C: Finite spectral resolution and
first-order moment of a line

Let I(v) be the intensity of a line as a function of radial velocity.
We are interested in calculating the first-order moment of the line
profile,

µ1 =
µ′1
µ0
, (C.1)

where

µ0 =

∫ +∞

−∞
I(v) dv, µ′1 =

∫ +∞

−∞
v I(v) dv. (C.2)

We will make use of the relationship between the zeroth
and first-order moments of a function f and the values of its
Fourier transform F[ f ] and its derivative F′[ f ] at the origin (see
Bracewell 2000, Chap. 8)

µ0 = F[ f ](0), µ′1 =
F′[ f ](0)
−2πi

. (C.3)

Let us assume that the finite spectral resolution of the spec-
trometer can be represented by the convolution of the real line
profile with an instrumental response function W(v),

I∗(v) = (I ∗W)(v), (C.4)

and that the instrumental response is normalized to unit area,
and is symmetric with respect to velocity or, more precisely, with
zero first-order moment,∫ +∞

−∞
W(v) dv = 1,

∫ +∞

−∞
vW(v) dv = 0. (C.5)

In the Fourier domain we have

F[W](0) = 1,
F′[W](0)
−2πi

= 0. (C.6)

The zeroth-order moment calculated from the observed pro-
files will be

µ∗0 = F[I ∗W](0) = F[I](0) F[W](0) = F[I](0) = µ0, (C.7)

where we used that the Fourier transform of a convolution is
the product of Fourier transforms (Bracewell 2000). Thus, the
zeroth-order moment is independent of the spectral resolution.

Let us consider now the unnormalized first-order moment,

µ′1
∗

=

∫ +∞

−∞
v I∗(v) dv. (C.8)

By using the relations with the derivative of the Fourier
transform, we obtain

µ′1
∗

=
F′[I ∗W](0)
−2πi

=
(F[I] F[W])′(0)

−2πi
=

F′[I](0)
−2πi

F[W](0)

+ F[I](0)
F′[W](0)
−2πi

=
F′[I](0)
−2πi

= µ′1. (C.9)

Thus, µ′1 is independent of the spectral resolution, and so is
the normalized first-order moment, µ1 = µ′1/µ0.

In conclusion. the spectral resolution does not affect the
value of the first-order moment of a line, as long as the spec-
trometer response can be described as a convolution with an
instrumental response symmetric with respect to velocity.

Appendix D: 2D Convolution of a power-law
function with a Gaussian beam

Let F(p) be a 2D power-law function of the radial distance

F(p) = A p−m, (D.1)

that has to be convolved with a Gaussian beam of unit area and
half-power beamwidth b,

B(p) =
4 ln 2
πb2 e−4 ln 2 p2/b2

. (D.2)

The 2D convolution

Fb = F ∗ B, (D.3)

will have a different behavior for p � b and p � b. On the one
hand, for p � b the convolution with the Gaussian beam will not
modify noticeably the power-law function and the result will not
depend on b,

Fb(p) ' F(p) (p � b). (D.4)

On the other hand, for p � b, Fb will not depend much on p
and will be approximately constant,

Fb(p) ' F0 (p � b), (D.5)

with F0 given by

F0 =

∫ ∞

0
F(p) B(p) 2πp dp = 2πA

4 ln 2
πb2

∫ ∞

0
p1−m e−4 ln 2 p2/b2

dp.

(D.6)

The integral can be evaluated analytically and the result is

F0 = (4 ln 2)m/2Γ(1 − m/2) A b−m. (D.7)

For the cases of interest, we have

F0 =


1.5813 A b−1/2 (m = 1/2),
2.9513 A b−1 (m = 1),
7.7901 A b−3/2 (m = 3/2).

(D.8)

The characteristic radius that separates the two regions of Fb
can be estimated as the intersection of the two asymptotic values,
that is, F(pc) = F0, resulting in

pc =
b

(4 ln 2)1/2[Γ(1 − m/2)]1/m . (D.9)

For the cases of interest, we have

pc =


0.3999 b (m = 1/2)
0.3388 b (m = 1)
0.2545 b (m = 3/2).

(D.10)
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